
,,
.

IASTED Int. Confi on Software Engineering 1 1/2-5/97

FMT (FLIGHT SOFIWARE MEMORY TRACKER) FOR CASSINI SPACECRAFT’ -
SOFTWARE ENGINEERING USING JAVA

Edwin P. Kan, Hal Uffelman, and AlIan H. Wax
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, Ca. 91109

ABSTRACT

The software engineering design of the Flight Software Memory Tracker (FMT) “Tool” is
discussed in this paper. FMT is a ground analysis software set, consisting of “utilities” and
“procedures”, designed to track the flight software, i.e., “images” of memory load and updatable
parameters of the computers on-board the Cassini spacecraft. FMT is implemented in Java.

1. INTRODUCTION

Tracking flight software (FSW) images on spacecraft is a vital activity in ground systems and
mission operations. Particularly true for one-of-a-kind spacecraft built for space and planetary
exploration, FSW requires constant maintenance, patches, parameter changes, and occasionally
even complete new memory loads. Complete and accurate knowledge of current and past FSW
images is essential.

In the history of spacecraft operations at the Jet Propulsion Laboratory (JPL), ground mission
operations analysts utilize various degrees of automation, integration of software tools and manual
procedures to track FSW. While dynamic memory addresses can only be tracked by full-up
hardware and software simulation, static memory addresses, constants, and certain quasi-static
parameter addresses are always tracked. For such address spaces of interest, an up-to-date FSW
image, a FSW image at a specific time in history, and a trend of certain parameters over time, are
often the basis for analysis, diagnosis and prognosis.

The FSW Memory Tracker (FMT) is a ground systems “Tool”, designed expressly for tracking the
FSW code and parameter address spaces of interest, FMT maintains a history of every FSW
image copy on-board the spacecraft. These images are living images, which are updated when the
on-board images are updated, can be “evaluated” at any specific time of history, can be queried for
history and statistics, and can be processed to produce human readable parameter values in
engineering units instead of machine representation, etc. While on-board FSW can be updated by
uplink commands transmitted to the spacecraft, the same commands can be parsed and interpreted
by FMT into update data groups appended to FMT images. Memory readout of spacecraft address
spaces (in addition to normal telemetry downlink) can also be used to update FMT images.
Subsequent to intended or unintended reinitialization, or in order to revive specific images /
parameters at specific instances of history, generic commands to update on-board FSW images and
FMT images can also be generated by FMT through an analysis of differences in specific FMT
images.

The software design of FMT has to pay attention to the maintenance of multiple FSW images at
many instances of time. For Cassini, while each image is necessarily a 5 12K word (16-bit per
word) image, this task is by no means unmanageable. The challenge is in maintaining multiple
time copies of multiple physical copies of the images.

The approach and solution to such a large data handling challenge is achieved in FMT by the use of
novel, yet intuitive, data and file structures. While the processing of data in FMT is fairly

page 1 of 8

.
,.-

IASTED Int. Confi on Sofmare Engineering 1 lf2-5/97

straightforward (the command parsing and updateByCmd requires an interface to a long-
established JPL program set), the software engineering of FMT requires multiple but similar
classes of algorithms for different data structures. As such, the property inheritance feature
(among other attractive features) of an object oriented programming language such as C++ or Java
can be utilized to full advantage.

Using the idea of “procedures” and “utilities”, FMT is implemented as a program set, consisting of
multiple “utility” programs, some of which are programs that also call other FMT utilities. FMT
users are best served by executing scripts, such as UNIX scripts, to achieve the higher-level
objectives of FMT.

FMT was developed as part of a the Multimission Spacecraft Analysis System (MSAS), under the
auspcies of the Jet Propulsion Laboratory Multimission Ground Systems Office. Their extensive
hardware configuration and software capabilities can be found in Ref. 1 and 2. The functional
design and software specification of FMT can be found in Ref. 3.

FMT is implemented in Java with the exception of certain programs with which FMT interfaces.
While the application and operation aspects of FMT will be discussed in a different paper (Ref. 4),
its software design aspects are discussed in this paper.

2. FMT FOR CASSINI GROUND SYSTEMS

The Cassini spacecraft is scheduled for launch in October, 1997, will spend seven years of
interplanetary flight, to arrive and be inserted into orbits around planet Saturn and its moons.
Major scientific goals of Cassini after orbit insertion include remote science data collection, during
a primary mission which ends in year 2008.

During its twelve years of primary mission, the Cassini software is expected to be changed,
patched, reinitialized, reloaded, and have parameters updated. These changes will mostly be
commanded by ground mission operations, and occasionally be induced on-board by unforseen
faults and fault responses.

On Cassini, apart from the science instruments which all have certain computing and sequencing
capabilities, there are two major spacecraft subsystems that have extensively computing facilities,
namely the AACS (Attitude and Articulation Control Subsystem) and the CDS (Command and Data
Subsystem). Both AACS and CDS are equipped with dual redundant MIL-STD-1750A computers
with 5 12K memory each. In addition, there are two redundant solid state recorders (SSR), each
with a capacity of 2 gigabits each. On each SSR are resident multiple (4) copies of AACS and
CDS FSW memory load images.

Counting these FSW images, AACS tallies 10 copies (there are another two additional copies on
extended memory). CDS tallies 10 copies. The SSR copies are formatted basically like the
compiled load images, with additional checksums appended to the data records. The actual RAM
images are 5 12K-word images, basically address-value pairs.

All SSR data records are tracked by FMT. On-board SSR records can be changed by the ground
via special commands, comprising ALF, ALF_SKIP and ALF_END commands (Ref. 4).

Not all 5 12K RAM addresses are, or can be, tracked by FMT. The static code addresses and
constants comprise about 50~0 of the 5 12K addresses. Of interest to mission operations analysts
are parameter addresses such as tables, mathematical constants, spacecraft properties, and
algorithm multipliers, etc. “Variables” that tend to be altered by FSW during nominal FSW and
sequence execution are normally included in spacecraft telemetry downlink, and can be subjected to

page 2 of 8

. .
,.=

IASTED lnt, Conf on Sofhvure Engineering 1112-5197

a different tracking outside of FMT. For FMT, the special class of parameter lists and data values
tallies several hundred or more records. This set of parameters are populated with values upon
software initialization. They may be altered via special parameter change commands or brute force
memory_write (MEM_WRITE and PATCH) commands (Ref. 4).

FMT is intended for use by Cassini AACS and CDS mission operations analysts. Sharing the
design pedigree of analysis tools developed for Mars Obversver and Galileo (Ref. 6 and 7), FMT
is a software tool to be used daily or weekly by analysts to maintain and update spacecraft FSW
images. FMT activities include a one-time data initialization and setup; updating of images caused
by uplink commands; updating of images as reflected by dowrdink inputs; generation of difference
images and uplink commands (stems and parameters); and miscellaneous analysis such as history,
statistics and queries. The frequency of “official” FMT execution depends on the frequency of
uplink and downlink activities, which in turn depends on the availability of Deep Space Network
coverage. Otherwise, FMT can be exercised as an end-to-end analysis, synthesis, and predict tool.

For Cassini, FMT interfaces with a JPL uplink software tool, called SEQ_GEN, which is used for
the parsing of uplink commands.

While FMT is now customized to Cassini, it is applicable to the class of spacecraft designed and
operated by JPL. Upon transcending design features specific to JPL command and telemetry
systems, the data file structure design and processing methodology of FMT can be extended to
general spacecraft systems.

3. FMT SOFTWARE ARCHITECTURE AND DATA STRUCTURE

The accomplishment of the objectives of FMT is done via the concept of multiple FMT utilities
scripted together to achieve a function or a class of functions. Due to the multiplicity of images,
over spatial and temporal span, a not-so-large data tracking and database task can only be solved
via well conceived system-engineered data structures and processing architecture. (“Spatial” refers
to multiple copies over multiple subsystems. “Temporal” refers to updates of FMT images, where
updates could be as frequent as seconds or minutes, namely the time interval between update
commands.)

The FMT software and data structure design utilizes the concept of maintaining temporal images
using update deltas. Where and when required, “evaluation” and “refresh” operations can be
performed on these composite “images” for time-specific “peeking” and “poking”.

Figure 1 shows the context diagram and Figure 2 shows the (Level 1) Data Flow Diagram of FMT,

Evident in the Data Flow Diagram are the various data file types including:
.alv .ealv .xalv (SSR “Assisted_Load_File” data classes)
.fmt .efmt .xfmt (RAM FMT data classes)
.amf .eamf (Attribute_Model_File classes)
.adb .eadb (Attribute_Data_Base classes)
.msk .emsk (Data Mask classes)

The utility of, hence class extension and property inheritance between, these data structures can be
easily exemplified by the following:

At load time, the RAM .fmt file contains the data records pertaining to load time, i.e., one data
group. Each group has a data group header comprised of time (SCET) and image type (RAM I
SSR I etc.), and $$EOG (an indicator for “end-of-group”). Each data record is structured to show
RAM start_address, data values of up to sixteen RAM addresses and a new line character. The
.fmt file has a file header record and $$EOF (an indicator for “end-of-file”).

page 3 of 8

. .
,,.

IASTED lnt. Confi on Software Engineering

When an update takes place, the update is implemented in the .fmt file with a new time-stamped
data group appended to the previous data group(s). With such appending of data group(s), the
,fmt file takes the nomenclature of ,efmt (“gnhanced” fret) file.

For certain update operations, delta update files with multiple data groups are generated by FMT
utilities. Due to the “spatial” nature of FMT, these update groups need to be designated to specific
“spatial” images, e.g. AACS_A computer vs AACS_B computer. Hence, the nomenclature of a
.xfmt (“extended fret) file, where the data group header takes an extra descriptor (a Software Image
Designator, MD), e.g. SCET; RAM; AACS_A. The following examples show the skeleton of a
.xfmt f i le:

DATA_FI LE_HEADER
1997 -070 TOO:00:00.000; RAM; AACS_A
000670 e511 e522 740a 8aOf 0000 7b04 8aO0 ldf5 . . . ldf2 85ff 0003 7ff0 7ef0
000680 23e8 7ff0 7ef0 2384 7ff0 7ef0 2309 7ff0 . . . 7ef0 24a8 7ff0 7ef0 24af
$$EOG
1997 -298 T12:OO:01 .001; RAM; AACS_A, AACS_B
038e80 4189 37f7
039366 7dce 000d 0000
$$EOG
$$$EOF

All twelve file types stated above have identical data header, data group, .ttt and .ettt file structure.
Data record structures for different data types are different. A RAM fmt data record has been
shown as a 17-element record, consisting of an address followed by sixteen 4-nibble hex values.
As another example, an .adb data record takes the following form (in single line):

038e80,0, A5.6.7,4189 37 f7,1997-098TOO: OO:OO.OOO,O .001,4/8/1997 0:00:00,
ACL_PARAMETERS, Att itude_Deadband, 6, POSDB [O] ,2, f lost, 7DEADBAND, 1, 0.001,
rad,O . 0005,0.35 ,,, ,,, ,,, ,,

Of note is that all these files are ASCII text files, which can be imported and exported to popular
COTS (commercial off-the-shelf) personal computer editor and application programs, hence
making it relatively painless to perform front-end and tail-end processing. FMT is written in Java,
which means that its bytecodes are independent of, and hence executable on multiple end-user
computing platforms.

4. FMT SOFTWARE DESIGN USING JAVA

At the time of this writing, FMT comprises 124 classes of objects. Within these 124 classes are
similar groups of classes, befitting the commonality of data file structures designed into FMT. For
illustration, the following are the formative classes defined for .fmt data:

FMT.java FMTGroup.java FMTGroupData.j ava
FMTGroupDataElement.java FMTError.java FMTGroupError,j ava
FMTGroupDataElementError.java
GroupHeader.java GroupData.java
GroupHeaderError.java GroupDataElementError.java

The class hierarchy for this group of classes is illustrated in Figure 3.

The FMT design embodies many other Java programming language features. The garbage
collection feature is used extensively in FMT codes. This feature is particularly important because
FMT data files, notably .efmt files, can be very large. Each time when a .efmt file is processed,

page 4 of 8

..
,.-

IASTED Int. ConJ on Software Engineering I 1/2-5/97

thousands to tens of thousands of objects (each FMTGroupDataElement is an object) are
generated, dynamically space allocated, and marked for deletion from memory as the individual
object has been processed. In this way, the programmer is freed of the underlying task of
managing space, which otherwise requires complex coding logic and a great deal of debugging
effort.

The Java feature of interfaces and “child” classes are used extensively, e.g., the Java keywords
“import”, “implement”, and “extend”. FMT, however, chooses to use one single package since all
fmt objects have structures in common, and individual programs exist under a single logical
umbrella. Three of the four Ps, as discussed in Ref. 6, namely protection schemes using
“public”, “protected”, and “private” are used all through FMT. (The fourth P, namely package
protection, is not exercised in FMT.)

Java exception handling features using keywords “final”, “throw” and “try” are used for catching
unusual conditions, detecting semantic and syntatic errors in the data, and checking bounds.
Particularly, arrays in Java are inherently checked for bounds at runtime; thus relieving the
programmer of the difficult task of detecting invalid array reference due to data values in the
processing .efmt files (and other files). In each of the above exception handling schemes, code to
handle these cases is written once and normal program flow assumes the non-error case.

Java is bundled with an extensive library, including java.lang, java.util, and java.io. Heavily used
in FMT are the Vector and Properties operations, No additional libraries, whether from other
commercial sources or private individual sources, were needed. The task of certifying FMT
becomes so much easier - when the embedded Java libraries are considered a priori certified.

The current FMT design has 23 programs, or “utilities”, listed as follows:
fmtbeheadeadb fmtcmdstemgen fmtconvert fmtcreate
fmtcs16 fmtdiff fmtdv2eu fmteu2dv
fmtextractdes fmtfilteralv fmtmaskalv fmtmasktdc
fmtmaskxfm fmtmemupdatecmdgen fmtmerge fmtmro
fmtquery fmtrefresheadb fmtminit fmtsort
fmtuser fmtupdatebycommand fmtxemerge

These “utilities” are normally executed in scripts, i.e. “procedures”, in order to achieve an overall
high level objective of fret, as discussed in Section 2, The scripting of these utilities will be
discussed in details in another paper (ref. 7).

5. SUMMARY

The Flight Software Memory Tracker (FMT) is being embraced as a new and powerful ground
analysis tool for the Cassini spacecraft mission. The overall objectives of FMT and its software
architecture / design/Java implementaiton have been discussed in this paper.

This Java implementation of FMT achieves three of the four S’s discussed in Ref.6, namely,
small, simple and safe (the fourth S is secure, relating to over the intemet security, which is not
pertinent in the present context). The Java implementation of FMT code will permit the code to be
reused for different projects, which may adopt different software architecture, and which may have
multiple users with various kinds of computing platforms. The use of Java offers the opportunity
to obviate multiple developments of the same application. The same code will run on computers
regardless of their architecture and operating system, as long as a Java virtual machine exists on
that computer; that being a definite trend into the next century.

page 5 of 8

●
✎

✌✎❞

lASTED ht. Con$ on Sojhvare Engineering I v2-5/97

Acknowledgement
This work was carried out at the Jet Propulsion Laboratory (JPL), California Institute of
Technology, under contract to the National Aeronautics and Space Administration. The functional
requirements of this work were developed by R. Morillo; engineering design/ software
specification by E. Kan and H. Uffelman; software design by A. Wax; and implementation by A.
Wax, J. Tusynzski and T. White.

References
1.

2.

3.

40

5.

6.

7.

8.

Hill, M. (custodian), “Multimission Spacecraft Analysis System - Functional Requriements
Document,” Jet Propulsion Laboratory, Document #JPL D-9173, Rev.D, July 10, 1996.
Murphy, S. C., et.al., “Customizing the JPL Multimission Ground Data System,” Proc.
SPACEOPS 1994, 3rd Int, Symp. on Space Mission Operations and Ground Data Systems,
held at GSFC, Greenbelt, Md., USA, Nov. 14-18, 1994.
Kan, E. P., and H. Uffelman, “CDS (Command and Data Handling Subsystem) Package
Requirements Document - Flight Software Memory Tracker,” Jet Propulsion Laboratory
Document #JPL D-9173 (Section 3.2), Dec. 1,1997.
Tapia, E. (custodian), “Cassini Functional Requirements 3-291, Uplink Formats & Command
Tables,” Jet Propulsion Laboratory Document #CAS-3-291, Rev. E, Jan, 24, 1997.
Kan, E. P., “Mission Operations Data Analysis Tools for Mars Observer Guidance and
Control,” Proc. SPACEOPS 1994, 3rd Int, Symp. on Space Mission Operations and Ground
Data Systems, held ‘at GSFC, Greenbelt, Md., USA, Nov .14- 18, 1994.
Kan., E.P., “Low Bit Rate Autonomous Spacecraft - End-to-End G&C System Design,”
Proceeding of the AIAA GNC Conf,, (American Institute of Aeronautics and Astronautics,
Guidance and Control Conference) Paper #96-3925, San Diego, CA 7/23 -3 1/96.
Kan, E. P. et al., “Tracking Flight Software in Cassini Mission Operations Using the FMT
Tool,” (submitted to) SPACEOPS 1998, 5th Int, Symp, on Space Mission Operations and
Ground Data Systems, to be held at Tokyo, Japan, 6/1-5/98,
Lemay, L, and C. Perkins, “Teach Yourself Java 1,1 in 21 Days,” Sams.net Publishing, 1997.

page 6 of 8

,...
,,.

IASTED Int. ConJ on Sofhvare Engineering 11/2-5/97

Figure 1. Fllght_Softvvare_Memoy_Tracker (FMT) Context Diagram (Level O)

FMSAS
Tost_Varielkm_file User

Telemetfy

I

&wnrnmd.Files

mro-tlm_deta sequence files

User I Ussr ln~ Setup
AAcs FMT_lmages
& C D S ~ FMT_memUPDATE.
Anafyst Echo Input; Anafysis Command_Files

-$

.Idm, map Files

b5!ll
Figure 2. FSW_Memory_Tracker (FMT) DFD (Level 1)

‘R’w(”xa’’””mt’-mx””””-
/1-

(.aafv, .efmtf

/ +’
SASF; PEF

FMT-Main FMT_m:~:fi::AT E_
2.0

.amf
.Idm, map

“&’T’mag’’”’pare

‘ k M & “’”mRAM_bad_pages
(from ffm)

page 7 of 8

,.*
.,*

. ..*

IASTED Int, Conf on Sofhvare Engineering 1 1/2-5/97

Figure 3. Class Hierarchy Diagram for FMT, EFMT, and XFMT Java Classes

SCET Fields (Int string)

Mem Fialda (string)

1 SID Fladls (vactor of strir@

1

FMTFialds (int, Int array)

page 8 of 8

